LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – CHEMISTRY FIRST SEMESTER – NOVEMBER 2009

CH 1808 - QUANTUM CHEMISTRY & GROUP THEORY

Date & Time: 09/11/2009 / 1:00 - 4:00	Dept. No.	Max. : 100 Marks
Date & Time: 03/11/2003 / 1:00 4:00	Dcpt. 140.	iviax 100 iviaina

PART-A

ANSWER ALL QUESTIONS

 $(10 \times 2 = 20)$

- 1. For the wave function $\Psi(\varphi) = Ae^{im\varphi}$, where m is an integer, for $0 \le \varphi \le 2\pi$, determine A so that the wave function is normalized.
- 2. Show that Ae^{-ax} is an eigen function of the operator d^2/dx^2 . What is the eigen value?
- 3. For the hexatriene molecule, calculate λ_{max} on the basis of particle in a one-dimensional box of length equal to 7.3Å.
- 4. The energy of a particle moving in a 3-D cubic box of side 'a' is $13h^2/4ma^2$. How many degenerate energy levels are there and what are they?
- 5. What is a node? Draw the radial distribution plot for 3p orbital of H-atom and indicate where the nodes are.
- 6. What is the value of $[\mathbf{y}, \mathbf{p}_{\mathbf{v}}]$? What is its physical significance?
- 7. When do we say two symmetry operations are in the same class? Give an example.
- 8. Identify the point groups for the following molecules: (a) H_2 (b) HBr (c) C_6H_6 (d) $Ni(CN)_4^{2-}$ (square planar)
- 9. Explain the terms 'hartree' and 'bohr'.
- 10. What is a character table? What is the meaning of B_u in a character table?

PART-B ANSWER ANY EIGHT QUESTIONS $(8 \times 5 = 40)$

- 11. Derive the time-independent Schroedinger equation from the time-dependent and prove that the property as electron density is time independent although the wave function describing an electron is time dependent.
- 12. The microwave spectrum of the CN radical shows a series of lines spaced by a nearly constant amount of 3.798 cm⁻¹. What is the bond length of CN?
- 13. What is a Hermitian operator? Show that the eigen value of a hermitian operator is real.
- 14. Write the Schroedinger equation for 1-D harmonic oscillator and verify if $\psi = (2a/\pi)^{1/4} exp(-ax^2)$ is an eigen function of the Hamiltonian operator for the 1-D harmonic oscillator.
- 15. Calculate the most probable position of r for an electron in He⁺ ion 1s orbital, given $\psi_{1s} = (1/\sqrt{\pi})(Z/a_0)^{3/2} \exp(-Zr/a_0)$.
- 16. Illustrate Bohr's Correspondence Principle with a quantum mechanical model.
- 17. Write the Hamiltonian in atomic units for H_2 molecule and explain briefly how Heitler-London and Rosen improved upon the MO theory treatment.

- 18. What is a Slater determinant? Write the four Slater determinants for the excited state of He atom (1s,2s).
- 19. Explain what a term symbol is and demonstrate its use in explaining the origin of the fine structure of the emission spectrum of sodium vapor used in street lighting.
- 20. State and illustrate the variation theorem applying to a suitable system. Compare the result with the true value.
- 21. Illustrate the following with the suitable example: (a) quantum mechanical tunneling (b) Born-Oppenheimer approximation.
- 22. The reducible representation obtained using the four Mn-O bonds in MnO₄ as bases is

T_d	Е	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
	4	1	0	0	2

Reduce this into irreducible representation using the T_d character table given below and find out the nature of hybrid orbitals in MnO_4 .

			$6\sigma_{\mathrm{d}}$	6S ₄	$3C_2$	8C ₃	Е	T_{d}
$-y^2$, x^2-y^2)	$x^{2}+y^{2}+z^{2}$ $(2z^{2}-x^{2}-y^{2}, x^{2}-y^{2})$ (xy,xz,yz)	(R_x,R_y,R_z) (x,y,z)	1 -1 0 -1 1	1 -1 0 1 -1	1 1 2 -1	1 1 -1 0	1 1 2 3 3	$egin{array}{cccc} A_1 & & & & \\ A_2 & & & & \\ E & & T_1 & & \\ T_2 & & & & \end{array}$
·y²	$(2z^2-x^2-y^2)$		0	0	-1	0	3	$\begin{matrix} A_2 \\ E \\ T_1 \end{matrix}$

PART-C ANSWER ANY FOUR QUESTIONS $(4 \times 10 = 40)$

- 23. a) Set up the Schroedinger equation for a particle in 1-D box and solve it for its energy and wave function.
 - b) The bond length and the force constant of ${}^{1}H^{127}I$ are 0.1609 nm and 314Nm $^{-1}$ respectively. Calculate the value of the fundamental vibrational frequency and its rotational constant. (6+4)
- 24. (a) Write the Schroedinger equation to be solved for H atom and solve it for its energy using a simple solution, which assumes the wave function to depend only on the distance r and not on the angles θ and φ .
 - b) Explain Spherical harmonics with a suitable example (7+3)
- 25. a) State Pauli Exclusion Principle applied to bosons.
 - b) Illustrate the Pauli Exclusion Principle taking He atom as example and derive the acceptable wave function for the ground state of He atom. (2+8)
- 26. a) What are the three important approximations that the Huckel MO method uses for treatment of π -orbitals in conjugated systems?
 - b) Write down the secular determinant using Huckel's method to allyl anion and obtain the expressions for the energy levels of the π electrons. (3+7)
- 27. (a) In solving the H_2^+ problem using the LCAO method, the lowest energy obtained is $E_+ = (H_{AA} + H_{AB}) / (1+S_{AB})$ where A and B refer to the two hydrogen nuclei. Explain each of the integrals in the above equation and their significance.
 - (b) Calculate the energy in cm⁻¹ of the first two energy levels of a particle in a box

and their energy difference for (a) an electron in a box of 2Å in length (b) a ball-bearing of mass 1g in box of 1 cm length. Compare the results and on their basis enunciate the Bohr's Correspondence Principle. (5+5)

28. Find the number, symmetry species of the infrared and Raman active vibrations of Boron trifluoride (BF₃), which belongs to D_{3h} point group.

(You may, if you wish, use the table of f(R) given below for solving this).

Operation:	Е	σ	i	C_2	C_3	C_4	C ₅	C_6	S_3	S ₄	S_5	S_6	S_8
f(R):	3	1	-3	-1	0	1	1.618	2	-2	-1	0.382	0	0.414
For any C _n , f	f(R) =	: 1 + 1	2cos($(2\pi/n)$,		For	any S _n , t	f(R) =	-1+	2cos(2	2π/n)		

D_{3h}	Е	$2C_3$	$3C_2$	σ_{h}	$2S_3$	$3\sigma_{\rm v}$		
A_1 '	1	1	1	1	1	1		$x^2 + y^2$, z^2
A_2'	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x,y)	(x^2-y^2,xy)
A_1 "	1	1	1	-1	-1	-1		
A_2 "	1	1	-1	-1	-1	1	Z	
Ε"	2	-1	0	-2	1	0	(R_{x},R_{y})	(xz, yz)